Introduction of Structured Learning

Hung-yi Lee

Structured Learning

- We need a more powerful function f
- Input and output are both objects with structures
- Object: sequence, list, tree, bounding box ...

\boldsymbol{X} is the space of one kind of object
\boldsymbol{Y} is the space of
another kind of object

In the previous lectures, the input and output are both vectors.

Introduction of Structured Learning Unified Framework

Unified Framework

Training

- Find a function F

$$
\mathrm{F}: X \times Y \rightarrow \mathrm{R}
$$

- $F(x, y)$: evaluate how compatible the objects x and y is

Inference (Testing)

- Given an object x

$$
\tilde{y}=\arg \max _{y \in Y} F(x, y)
$$

$f: X \rightarrow Y \Longrightarrow f(x)=\tilde{y}=\arg \max _{y \in Y} F(x, y)$

Unified Framework
 - Object Detection

- Task description

- Using a bounding box to highlight the position of a certain object in an image
- E.g. A detector of Haruhi
$X:$ Image $\longrightarrow Y:$ Bounding Box

Haruhi
(the girl with yellow ribbon)

Unified Framework - Object Detection

Training

- Find a function F

$$
\mathrm{F}: X \times Y \rightarrow \mathrm{R}
$$

- $\mathrm{F}(\mathrm{x}, \mathrm{y})$: evaluate how compatible the objects x and y is
x : Image

y : Bounding Box

the correctness of taking
range of y in x as "Haruhi"

Unified Framework - Object Detection

Training

- Find a function F

$$
\mathrm{F}: X \times Y \rightarrow \mathrm{R}
$$

- $\mathrm{F}(\mathrm{x}, \mathrm{y})$: evaluate how compatible the objects x and y is

Inference (Testing)

- Given an object x

$$
\tilde{y}=\arg \max _{y \in Y} F(x, y)
$$

input $x=$ ns

Enumerate all possible bounding box y

Unified Framework
 - Summarization

- Task description
- Given a long document
- Select a set of sentences from the document, and cascade the sentences to form a short paragraph

s_{i} : the $i^{\text {th }}$ sentence

Unified Framework - Summarization

Training

$F(x, y)$

Inference

Unified Framework - Retrieval

- Task description
- User input a keyword Q
- System returns a list of web pages

A list of web pages (Search Result)

Unified Framework - Retrieval

Training

Inference

$F(x, y)$

Statistics

Unified Framework

Training

- Find a function F

$$
\mathrm{F}: X \times Y \rightarrow \mathrm{R}
$$

- $\mathrm{F}(\mathrm{x}, \mathrm{y})$: evaluate how compatible the objects x and y is

Inference

- Given an object x

$$
\tilde{y}=\arg \max _{y \in Y} F(x, y)
$$

$$
F(x, y)=P(x, y) ?
$$

Training

- Estimate the probability $P(x, y)$

$$
P: X \times Y \rightarrow[0,1]
$$

Inference

- Given an object x

$$
\begin{aligned}
\tilde{y} & =\arg \max _{y \in Y} \mathrm{P}(y \mid x) \\
& =\arg \max _{y \in Y} \frac{\mathrm{P}(x, y)}{P(x)} \\
& =\arg \max _{y \in Y} \mathrm{P}(x, y)
\end{aligned}
$$

Statistics

Unified Framework

$F(x, y)=P(x, y)$?

Drawback for probability

- Probability cannot explain everything
- 0-1 constraint is not necessary
Strength for probability
- Meaningful

Energy-based Model: http://www.cs.nyu.edu /~yann/research/ebm/

Training

- Estimate the probability $P(x, y)$

$$
\mathrm{P}: X \times Y \rightarrow[0,1]
$$

Inference

- Given an object x

$$
\begin{aligned}
\tilde{y} & =\arg \max _{y \in Y} \mathrm{P}(y \mid x) \\
& =\arg \max _{y \in Y} \frac{\mathrm{P}(x, y)}{P(x)} \\
& =\arg \max _{y \in Y} \mathrm{P}(x, y)
\end{aligned}
$$

Unified Framework That'sit!?

Training

- Find a function F

$$
\mathrm{F}: X \times Y \rightarrow \mathrm{R}
$$

- $F(x, y)$: evaluate how compatible the objects x and y is

Inference (Testing)

- Given an object x

$$
\tilde{y}=\arg \max _{y \in Y} F(x, y)
$$

There are three problems in this framework.

Problem 1

- Evaluation: What does $F(x, y)$ look like?
- How $F(x, y)$ compute the "compatibility" of objects x and y

Object Detection:

Summarization:

Retrieval: $\mathrm{F}(\mathrm{x}=\underset{\text { "Obama" }}{\text { (keyword) }}$

Problem 2

- Inference: How to solve the "arg max" problem

$$
y=\arg \max _{y \in Y} F(x, y)
$$

The space Y can be extremely large!

Object Detection: $Y=A l l$ possible bounding box (maybe tractable)
Summarization: $Y=A l l$ combination of sentence set in a document ...

Retrieval: $Y=A l l$ possible webpage ranking

Problem 3

- Training: Given training data, how to find $\mathrm{F}(\mathrm{x}, \mathrm{y})$

Principle

Training data: $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \ldots,\left(x^{r}, \hat{y}^{r}\right), \ldots\right\}$
We should find $\mathrm{F}(\mathrm{x}, \mathrm{y})$ such that

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{F}\left(x^{2}, \hat{y}^{2}\right) \dagger \\
\mathrm{F}\left(x^{2}, y\right) \\
\text { for all } \\
y \neq \hat{y}^{2}
\end{array}\right\} \neq \\
& \underset{\substack{\mathrm{F}\left(x^{r}, \hat{y}^{r}\right) \\
\mathrm{F}\left(x^{r}, y\right) \\
\text { for all } \\
y \neq \hat{y}^{r}}}{ }\{\boldsymbol{\perp}
\end{aligned}
$$

Three Problems

Problem 1: Evaluation

- What does $F(x, y)$ look like?

Problem 2: Inference

- How to solve the "arg max" problem

$$
y=\arg \max _{y \in Y} F(x, y)
$$

Problem 3: Training

- Given training data, how to find $F(x, y)$

Three Problems

Problem 1：Evaluation

－What does $F(x, y)$ look like？

Have you heard the three problems elsewhere？

Problem 2：Inference

－How to solve the＂arg max

Problem 3：Training
－Given training data，how t

Hidden Markov Model

－Three Basic Problems for HMMs
Given an observation sequence $\bar{O}=\left(o_{1}, o_{2}, \ldots, o_{T}\right)$ ，and an HMM $\lambda=(\mathrm{A}, \mathrm{B}, \pi)$
－Problem 1：
How to efficiently compute $\mathrm{P}(\mathbf{O} \mid \lambda)$ ？
\Rightarrow Evaluation problem
－Problem 2 ：
How to choose an optimal state sequence $\mathbf{q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \ldots, \mathrm{q}_{\mathrm{T}}\right)$ ？
\Rightarrow Decoding Problem
－Problem 3 ：
Given some observations σ for the HMM λ ，how to adjust the model parameter $\lambda=(\mathrm{A}, \mathrm{B}, \pi)$ to maximize $\mathrm{P}(\mathbf{O} \mid \lambda)$ ？
\Rightarrow Learning／Training Problem

From 數位語音處理

The same as what we

Link to DNN?

Training

$\mathrm{F}: X \times Y \rightarrow \mathrm{R}$ $\mathrm{F}(\mathrm{x}, \mathrm{y})=-C E(\mathrm{~N}(x), y)$

Inference

$$
\tilde{y}=\arg \max _{y \in Y} F(x, y)
$$

In handwriting digit classification, there are only 10 possible y.

Introduction of Structured Learning Linear Model

Structured Linear Model

Problem 1: Evaluation

- What does $F(x, y)$ look like?
in a specific form

Problem 2: Inference

- How to solve the "arg max" problem

$$
y=\arg \max _{y \in Y} F(x, y)
$$

nuahlem 3: Training

- Given trainin ofala, how to $\min \dot{\prime} \Gamma(x, y)$

Structured Linear Model: Problem 1

- Evaluation: What does $F(x, y)$ look like?

Characteristics

Structured Linear Model: Problem 1

- Evaluation: What does $F(x, y)$ look like?
- Example: Object Detection

$)=$
percentage of color red in box y
percentage of color green in box y
percentage of color blue in box y
percentage of color red out of box y
area of box y number of specific patterns in box y

Structured Linear Model: Problem 2

- Inference: How to solve the "arg max" problem

$$
\begin{gathered}
y=\arg \max _{y \in Y} \mathrm{~F}(x, y) \\
\mathrm{F}(x, y)=w \cdot \phi(x, y) \Rightarrow y=\arg \max _{y \in Y} \mathrm{w} \cdot \phi(x, y)
\end{gathered}
$$

- Assume we have solved this question.

Structured Linear Model: Problem 3

- Training: Given training data, how to learn $F(x, y)$
- $F(x, y)=w \cdot \phi(x, y)$, so what we have to learn is w

Training data: $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \ldots,\left(x^{r}, \hat{y}^{r}\right), \ldots\right\}$
We should find w such that

$$
\begin{aligned}
& \forall r \text { (All training examples) } \\
& \forall y \in Y-\left\{\hat{y}^{r}\right\} \quad \begin{array}{l}
\text { (All incorrect label } \\
\text { for } r \text {-th example) }
\end{array} \\
& \qquad w \cdot \phi\left(x^{r}, \hat{y}^{r}\right)>w \cdot \phi\left(x^{r}, y\right)
\end{aligned}
$$

Structured Linear Model: Problem 3

Structured Linear Model:

 Problem 3

Structured Linear Model: Problem 3

Solution of Problem 3

Difficult?

Not as difficult as expected

Algorithm

Will it terminate?

- Input: training data set $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \ldots,\left(x^{r}, \hat{y}^{r}\right), \ldots\right\}$
- Output: weight vector w
- Algorithm: Initialize w = 0
- do
- For each pair of training example $\left(x^{r}, \hat{y}^{r}\right)$
- Find the label \tilde{y}^{r} maximizing $w \cdot \phi\left(x^{r}, y\right)$

$$
\tilde{y}^{r}=\arg \max _{y \in Y} w \cdot \phi\left(x^{r}, y\right)(\text { question 2) }
$$

- If $\tilde{y}^{r} \neq \hat{y}^{r}$, update w

$$
w \rightarrow w+\phi\left(x^{r}, \hat{y}^{r}\right)-\phi\left(x^{r}, \tilde{y}^{r}\right)
$$

Algorithm - Example

- $\phi\left(x^{1}, \hat{y}^{1}\right)$
- $\phi\left(x^{1}, y\right)$
$\star \phi\left(x^{2}, \hat{y}^{2}\right)$
$\star \phi\left(x^{2}, y\right)$

- $\phi\left(x^{1}, \hat{y}^{1}\right)$

Algorithm - Example

Initialize w = 0
pick $\left(x^{1}, \hat{y}^{1}\right)$

- $\phi\left(x^{1}, y\right)$
$\star \phi\left(x^{2}, \hat{y}^{2}\right)$
$\star \phi\left(x^{2}, y\right)$
$\tilde{y}^{1}=\arg \max _{y \in Y} w \cdot \phi\left(x^{1}, y\right)$
If $\tilde{y}^{1} \neq \hat{y}^{1}$, update w

$$
w \rightarrow w+\phi\left(x^{1}, \hat{y}^{1}\right)-\phi\left(x^{1}, \tilde{y}^{1}\right) \quad w \tilde{y}^{1}
$$

Because $w=0$ at this time, $\phi\left(x^{1}, y\right)$ always 0

Random pick one point as \tilde{y}^{r}

- $\phi\left(x^{1}, \hat{y}^{1}\right)$

Algorithm - Example

- $\phi\left(x^{1}, y\right)$
pick $\left(x^{2}, \hat{y}^{2}\right)$
$\tilde{y}^{2}=\arg \max _{y \in Y} w \cdot \phi\left(x^{2}, y\right)$
If $\tilde{y}^{2} \neq \hat{y}^{2}$, update w

$$
w \rightarrow w+\phi\left(x^{2}, \hat{y}^{2}\right)-\phi\left(x^{2}, \tilde{y}^{2}\right)
$$

- $\phi\left(x^{1}, \hat{y}^{1}\right)$

Algorithm - Example

- $\phi\left(x^{1}, y\right)$ $\star \phi\left(x^{2}, \hat{y}^{2}\right)$
pick $\left(x^{1}, \hat{y}^{1}\right)$ again
$\tilde{y}^{1}=\arg \max _{y \in Y} w \cdot \phi\left(x^{1}, y\right)$
$\tilde{y}^{1}=\hat{y}^{1} \Rightarrow$ do not update w
$\tilde{y}^{1}=\hat{y}^{1}$
$\star \phi\left(x^{2}, y\right)$

$$
\tilde{y}^{2}=\hat{y}^{2}
$$

pick $\left(x^{2}, \hat{y}^{2}\right)$ again
$\tilde{y}^{2}=\arg \max _{y \in Y} w \cdot \phi\left(x^{2}, y\right)$
$\tilde{y}^{2}=\hat{y}^{2} \Longrightarrow$ do not update w

$$
\begin{aligned}
& w \cdot \phi\left(x^{1}, \hat{y}^{1}\right) \\
& \geq w \cdot \phi\left(x^{1}, y\right) \\
& w \cdot \phi\left(x^{2}, \hat{y}^{2}\right) \\
& \geq w \cdot \phi\left(x^{2}, y\right)
\end{aligned}
$$

So we are done

Assumption: Separable

- There exists a weight vector $\widehat{w} \quad\|\hat{w}\|=1$
$\forall r$ (All training examples)
$\forall y \in Y-\left\{\hat{y}^{r}\right\}$ (All incorrect label for an example)

$$
\begin{aligned}
& \hat{w} \cdot \phi\left(x^{r}, \hat{y}^{r}\right) \geq \hat{w} \cdot \phi\left(x^{r}, y\right) \text { (The target exists) } \\
& \hat{w} \cdot \phi\left(x^{r}, \hat{y}^{r}\right) \geq \hat{w} \cdot \phi\left(x^{r}, y\right)+\delta
\end{aligned}
$$

Assumption: Separable

$$
\begin{aligned}
& \hat{w} \cdot \phi\left(x^{r}, \hat{y}^{r}\right) \geq \hat{w} \cdot \phi\left(x^{r}, y\right)+\delta \\
& \bullet \phi\left(x^{1}, \hat{y}^{1}\right) \\
& \bullet \phi\left(x^{1}, y\right) \\
& \star \phi\left(x^{2}, \hat{y}^{2}\right) \\
& \star \phi\left(x^{2}, y\right)
\end{aligned}
$$

Proof of Termination

w is updated once it sees a mistake

$$
\begin{aligned}
& w^{0}=0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \ldots \ldots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \ldots \ldots \\
& w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\left(\text { the relation of } w^{k} \text { and } w^{k-1}\right)
\end{aligned}
$$

Proof that: The angle ρ_{k} between \hat{w} and w_{k} is smaller as k increases
Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k}=\frac{\hat{\hat{w}} \cdot \frac{w^{k}}{\|\hat{w}\|} \cdot \frac{\left\|w^{k}\right\|}{}}{\underline{4}}$

$$
\begin{aligned}
\hat{w} \cdot w^{k} & =\hat{w} \cdot\left(w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right) \\
& =\hat{w} \cdot w^{k-1}+\frac{\hat{w} \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-\hat{w} \cdot \phi\left(x^{n}, \tilde{y}^{n}\right)}{\geq \delta(\text { Separable })} \geq \hat{w} \cdot w^{k-1}+\delta
\end{aligned}
$$

Proof of Termination

w is updated once it sees a mistake

$$
\begin{aligned}
& w^{0}=0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \ldots \ldots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \ldots \ldots \\
& w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\left(\text { the relation of } w^{k} \text { and } w^{k-1}\right)
\end{aligned}
$$

Proof that: The angle ρ_{k} between \hat{w} and w_{k} is smaller as k increases
Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k}=\frac{\hat{w^{2}} \cdot w^{k}}{\|\hat{w}\|}$

$$
\hat{w} \cdot w^{k} \geq \hat{w} \cdot w^{k-1}+\delta
$$

$$
\hat{w} \cdot w^{1} \geq \hat{w} \cdot w^{0}+\delta
$$

$$
\geq \delta
$$

$$
\hat{w} \cdot w^{k} \geq k \delta
$$

$\hat{w} \cdot w^{1} \geq \delta$

$$
\begin{aligned}
& \hat{w} \cdot w^{2} \geq \hat{w} \cdot u \\
& \hat{w} \cdot w^{2} \geq 2 \delta
\end{aligned}
$$

(so what)

Proof of Termination

$$
\cos \rho_{k}=\frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\left\|w^{k}\right\|} \quad w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)
$$

$$
\left\|w^{k}\right\|^{2}=\left\|w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right\|^{2}
$$

$$
=\left\|w^{k-1}\right\|^{2}+\frac{\| \phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)}{>0} \|^{2}+\frac{2 w^{k-1} \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right)}{?<0 \text { (mistake) }}
$$

Assume the distance between any two feature vector is smaller than R

$$
\leq\left\|w^{k-1}\right\|+\mathrm{R}^{2}
$$

$$
\begin{aligned}
& \left\|w^{1}\right\|^{2} \leq\left\|w^{0}\right\|^{2}+\mathrm{R}^{2}=\mathrm{R}^{2} \\
& \left\|w^{2}\right\|^{2} \leq\left\|w^{1}\right\|^{2}+\mathrm{R}^{2} \leq 2 \mathrm{R}^{2} \\
& \ldots \\
& \left\|w^{k}\right\|^{2} \leq k \mathrm{R}^{2}
\end{aligned}
$$

Proof of Termination

$$
\begin{array}{rlrl}
\cos \rho_{k} & =\frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\left\|w^{k}\right\|} & \hat{w} \cdot w^{k} \geq k \delta & \left\|w^{k}\right\|^{2} \leq k \mathrm{R}^{2} \\
& \geq \frac{k \delta}{\sqrt{k R^{2}}}=\sqrt{k} \frac{\delta}{R} & \cos \rho_{k} & \cos \rho_{k} \leq 1 \\
\sqrt{k} \frac{\delta}{R} \leq 1 & \\
k & & \sqrt{k} \frac{\delta}{R} \\
k & & & \\
& & & \\
\hline
\end{array}
$$

Proof of Termination

Structured Linear Model: Reduce 3 Problems to 2

Problem 1: Evaluation

$F(x, y)=w \cdot \phi(x, y)$

- How to define $F(x, y)$

Problem A: Feature

Problem 2: Inference

- How to find the y with the largest $\mathrm{F}(\mathrm{x}, \mathrm{y})$

Problem 3: Training

- How to learn F(x,y)
- How to define $\phi(x, y)$

Problem B: Inference

- How to find the y with the largest $w \cdot \phi(x, y)$

Graphical Model

A language which describes the evaluation function

Structured Learning

We also know how

 to involve hidden information.
Problem 1: Evaluation

- What does $\mathrm{F}(\mathrm{x}, \mathrm{y})$ look like? $F(x, y)=w \cdot \phi(x, y)$

Problem 2: Inference

- How to solve the "arg max" problem

$$
y=\arg \max _{y \in Y} F(x, y)
$$

Problem 3: Training

- Given training data, how to find $F(x, y)$ Structured SVM, etc.

Difficulties

Difficulty 1. Evaluation $\boldsymbol{\square}$ Graphical Model

$$
F(x, y)=w \cdot \phi(x, y)
$$

Hard to figure out? Hard to interpret the meaning?

Difficulty 2. Inference
 Gibbs Sampling

We can use Viterbi algorithm to deal with sequence labeling. How about other cases?

Graphical Model

$$
F(x, y) \longleftrightarrow \text { Graph }
$$

- Define and describe your evaluation function $F(x, y)$ by a graph
- There are three kinds of graphical model.
- Factor graph, Markov Random Field (MRF) and Bayesian Network (BN)
- Only factor graph and MRF will be briefly mentioned today.

Decompose F(x,y)

- $F(x, y)$ is originally a global function
- Define over the whole x and y
- Based on graphical model, $F(x, y)$ is the composition of some local functions
- x and y are decomposed into smaller components
- Each local function defines on only a few related components in x and y
- Which components are related \rightarrow defined by Graphical model

Decomposable x and y

- x and y are decomposed into smaller components

POS Tagging

Each factor influences some

Factor Graph

 components.Each factor corresponds to a local function.

factor a
factor b factor c
$f_{a}\left(x_{1}, y_{1}\right) \quad f_{b}\left(x_{2}, y_{1}, y_{2}\right) \quad f_{d}\left(y_{2}\right)$
Larger value means more compatible.

$$
F(x, y)=f_{a}\left(x_{1}, y_{1}\right)+f_{b}\left(x_{2}, y_{1}, y_{2}\right)+f_{c}\left(y_{2}\right)
$$

You only have to define the factors.
The local functions of the factors are learned from data.

Factor Graph - Example

- Image De-noising

Each pixel is one component

http://cs.stanford.edu/people/karpathy/visml/ising_example.html

Factor Graph - Example

Noisy and clean images are related $>$ a: the values of x_{i} and y_{i}
The colors in the clean image is smooth.
$>\boldsymbol{b}$: the values of the neighboring y_{i}

$$
\begin{aligned}
& f_{a}\left(x_{i}, y_{i}\right)=\left\{\begin{array}{cl}
1 & x_{i}=y_{i} \\
-1 & x_{i} \neq y_{i}
\end{array}\right. \\
& f_{b}\left(y_{i}, y_{j}\right)=\left\{\begin{array}{cl}
2 & y_{i}=y_{j} \\
-2 & y_{i} \neq y_{j}
\end{array}\right.
\end{aligned}
$$

The weights can be learned from data.

Factor Graph - Example

Noisy and clean images are related $>$ a: the values of x_{i} and y_{i}
The colors in the clean image is smooth.
$>\boldsymbol{b}$: the values of the neighboring y_{i}

$$
\begin{aligned}
& \text { Realize } F(x, y) \text { easily } \\
& \text { from the factor graph } \\
& F(x, y)=\sum_{i=1}^{4} f_{a}\left(x_{i}, y_{i}\right) \\
& +f_{b}\left(x_{1}, y_{2}\right)+f_{b}\left(x_{1}, y_{3}\right) \\
& +f_{b}\left(x_{2}, y_{4}\right)+f_{b}\left(x_{3}, y_{4}\right)
\end{aligned}
$$

Factor Graph - Example

Factor: $>\mathbf{c}$: the values of x_{i} and the values of the neighboring y_{i}
$>d$: the values of the neighboring x_{i} and the values of y_{i}

$$
\begin{aligned}
& f_{c}\left(x_{i}, y_{i}, y_{i-1}\right) \\
& f_{d}\left(x_{i}, x_{i-1}, y_{i}\right) \\
& f_{e}\left(x_{i}, x_{i-1}, y_{i}, y_{i-1}\right)
\end{aligned}
$$

Markov Random Field (MRF)

Clique: a set of components connecting to each other Maximum Clique: a clique that is not included by other cliques

MRF

Each maximum clique on the graph corresponds to a factor

MRF

MRF

Factor Graph

Evaluation Function
$f_{a}(A, B)+f_{b}(A, D)+f_{c}(B, C)+f_{d}(C, D, E)+f_{e}(E, F, G)$

Training

$$
\begin{aligned}
& F(x, y)=f_{a}\left(x_{1}, x_{2}, y_{1}\right)+f_{b}\left(y_{1}, y_{2}\right) \\
& =w_{a} \cdot \phi_{a}\left(x_{1}, x_{2}, y_{1}\right)+w_{b} \cdot \phi_{b}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

$$
=\left[\begin{array}{c}
w_{a} \\
w_{b}
\end{array}\right]\left[\begin{array}{c}
\phi_{a}\left(x_{1}, x_{2}, y_{1}\right) \\
\phi_{b}\left(y_{1}, y_{2}\right)
\end{array}\right]
$$

$$
=w \cdot \phi(x, y)
$$

Simply training by structured perceptron or structured SVM

$$
\begin{aligned}
& \text { Training } \\
& F(x, y)=f_{a}\left(x_{1}, x_{2}, y_{1}\right)+f_{b}\left(y_{1}, y_{2}\right) \\
& =w_{a} \cdot \phi_{a}\left(x_{1}, x_{2}, y_{1}\right)+w_{b} \cdot \phi_{b}\left(y_{1}, y_{2}\right) \\
& y_{1}, y_{2} \in\{+1,-1\} \\
& \phi_{b}(+1,+1)=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& \phi_{b}(+1,-1)=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \\
& =w_{a} \cdot \phi_{a}\left(x_{1}, x_{2}, y_{1}\right)+w_{b} \cdot \phi_{b}\left(y_{1}, y_{2}\right) \\
& y_{1}, y_{2} \in\{+1,-1\} \\
& w_{b}=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right]
\end{aligned}
$$

Now can you interpret this?

Probability Point of View

- $F(x, y)$ can be any real number
- If you like probability

Between 0 and 1

$$
P(x, y)=\frac{e^{\prime}}{\sum_{x^{\prime}, y^{\prime}} e^{F\left(x^{\prime}, y^{\prime}\right)}} \longrightarrow \text { normalization }
$$

$$
\begin{aligned}
& P(y \mid x)=\frac{P(x, y)}{P(x)} \\
& \quad=\frac{P(x, y)}{\sum_{y^{\prime \prime}} P\left(x, y^{\prime \prime}\right)}=\frac{\frac{e^{F(x, y)}}{\sqrt{x_{x^{\prime}, y^{\prime}} e^{F\left(x^{\prime}, y^{\prime}\right)}}}}{\sum_{y^{\prime \prime}} \overrightarrow{e^{F\left(x, y^{\prime \prime}\right)}}}=\frac{e^{F(x, y)}}{\sum_{y^{\prime}, y^{\prime \prime}} e^{F\left(x, y^{\prime \prime}\right)}}
\end{aligned}
$$

Evaluation Function

- We want to find an evaluation function $F(x)$
- Input: object x, output: scalar $F(x)$ (how "good" the object is)
- E.g. x are images
- Real x has high $F(x)$
- $F(x)$ can be a network

- We can generate good x by $F(x)$:
- Find x with large $F(x)$
- How to find $F(x)$?

In practice, you cannot decrease all the x other than real data.

Evaluation Function

- Structured Perceptron
- Input: training data set $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \ldots,\left(x^{r}, \hat{y}^{r}\right), \ldots\right\}$
- Output: weight vector w
- Algorithm: Initialize w=0

$$
F(x, y)=w \cdot \phi(x, y)
$$

- do
- For each pair of training example $\left(x^{r}, \hat{y}^{r}\right)$
- Find the label \tilde{y}^{r} maximizing $\mathrm{F}\left(x^{r}, y\right)$

Can be an issue $\Rightarrow \tilde{y}^{r}=\arg \max _{y \in Y} F\left(x^{r}, y\right)$

- If $\tilde{y}^{r} \neq \hat{y}^{r}$, update w

Increase $F\left(x^{r}, \hat{y}^{r}\right)$, decrease $F\left(x^{r}, \tilde{y}^{r}\right)$

$$
w \rightarrow w+\phi\left(x^{r}, \hat{y}^{r}\right)-\phi\left(x^{r}, \tilde{y}^{r}\right)
$$

- until w is not updated

We are done!

How about GAN?

- Generator is an intelligent way to find the negative examples. "Experience replay", parameters from last iteration In the end

Where are we?

