Introduction of Structured Learning Hung-yi Lee

Structured Learning

- We need a more powerful function *f*
 - Input and output are both objects with structures
 - Object: sequence, list, tree, bounding box ...

X is the space of one kind of object

Y is the space of another kind of object

In the previous lectures, the input and output are both vectors.

Introduction of Structured Learning Unified Framework

Unified Framework

Unified Framework – Object Detection

Task description

- Using a bounding box to highlight the position of a certain object in an image
- E.g. A detector of Haruhi
 - X: Image \longrightarrow Y: Bounding Box

Haruhi

(the girl with yellow ribbon)

Unified Framework – Object Detection

Training

- Find a function F $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

x: Image

y: Bounding Box

F(x,y) ➡ F(

the correctness of taking range of y in x as "Haruhi"

Unified Framework – Object Detection

Training

- Find a function F $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

Inference (Testing)

- Given an object x
 - $\widetilde{y} = \arg \max_{y \in Y} F(x, y)$

Enumerate all possible bounding box y

Unified Framework

- Summarization
- Task description
 - Given a long document
 - Select a set of sentences from the document, and cascade the sentences to form a short paragraph

Unified Framework - Summarization

Training

Inference

Unified Framework

- Retrieval

- Task description
 - User input a keyword Q
 - System returns a *list* of web pages

A list of web pages (Search Result)

Unified Framework - Retrieval

Statistics

Unified Framework

Training

- Find a function F $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

Inference

• Given an object x $\widetilde{y} = \underset{y \in Y}{\operatorname{arg max}} F(x, y)$

F(x, y) = P(x, y)?

Training

• Estimate the probability P(x,y) P: $X \times Y \rightarrow [0,1]$

Inference

• Given an object x $\widetilde{y} = \arg \max_{y \in Y} P(y \mid x)$ $= \arg \max_{y \in Y} \frac{P(x, y)}{P(x)}$ $= \arg \max_{y \in Y} P(x, y)$

Statistics

Unified Framework

$$F(x, y) = P(x, y)?$$

Drawback for probability

- Probability cannot explain everything
- 0-1 constraint is not necessary

Strength for probability

Meaningful

Energy-based Model: http://www.cs.nyu.edu /~yann/research/ebm/

Training

• Estimate the probability P(x,y) P: $X \times Y \rightarrow [0,1]$

Inference

• Given an object x $\widetilde{y} = \arg \max_{y \in Y} P(y \mid x)$ $= \arg \max_{y \in Y} \frac{P(x, y)}{P(x)}$ $= \arg \max_{y \in Y} P(x, y)$

Unified Framework That's it!?

- Find a function F $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

Inference (Testing)

• Given an object x $\widetilde{y} = \underset{y \in Y}{\arg \max} F(x, y)$

There are three problems in this framework.

Problem 1

- *Evaluation*: What does F(x,y) look like?
 - How F(x,y) compute the "compatibility" of objects x and y

Problem 2

Inference: How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

The space *Y* can be extremely large!

Object Detection: Y=All possible bounding box (maybe tractable)

Summarization: Y=All combination of sentence set in a document ...

Retrieval: Y=All possible webpage ranking

Problem 3

• Training: Given training data, how to find F(x,y)

Principle

Training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$

We should find F(x,y) such that

Three Problems

Problem 1: Evaluation

• What does F(x,y) look like?

Problem 2: Inference

• How to solve the "arg max" problem

$$y = \arg \max_{y \in Y} F(x, y)$$

Problem 3: Training

• Given training data, how to find F(x,y)

From 數位語音處理

Link to DNN?

The same as what we have learned.

Training

$$F: X \times Y \rightarrow R$$

$$F(x, y) = -CE(N(x), y)$$

$$CE(N(x), y)$$

$$N(x)$$

$$N(x)$$

$$y$$

Inference

$$\widetilde{y} = \arg \max_{y \in Y} F(x, y)$$

In handwriting digit classification, there are only 10 possible y.

$$\begin{cases} y = [1 \ 0 \ 0 \ 0 \ \dots \] \\ y = [0 \ 1 \ 0 \ 0 \ \dots \] \\ y = [0 \ 0 \ 1 \ 0 \ \dots \] \\ \vdots \\ Find max \end{cases}$$

Introduction of Structured Learning Linear Model

Structured Linear Model

• Evaluation: What does F(x,y) look like?

- Evaluation: What does F(x,y) look like?
- Example: *Object Detection*

percentage of color red in box y percentage of color green in box y

percentage of color blue in box y percentage of color red out of box y

area of box y number of specific patterns in box y

• Inference: How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

$$F(x, y) = w \cdot \phi(x, y) \qquad \qquad y = \arg \max_{y \in Y} w \cdot \phi(x, y)$$

Assume we have solved this question.

- Training: Given training data, how to learn F(x,y)
 - $F(x,y) = w \cdot \phi(x,y)$, so what we have to learn is w

Training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^r, \hat{y}^r), \dots\}$ We should find w such that

 $\forall r \text{ (All training examples)} \\ \forall y \in Y - \{\hat{y}^r\} \begin{array}{l} \text{(All incorrect label} \\ \text{for r-th example)} \\ w \cdot \phi(x^r, \hat{y}^r) > w \cdot \phi(x^r, y) \end{array}$

Solution of Problem 3 Difficult? Not as difficult as expected

Algorithm

Will it terminate?

• Input: training data set
$$\{\!\! \left(\!\! x^1, \hat{y}^1 \right)\!\!, \!\! \left(\!\! x^2, \hat{y}^2 \right)\!\!, \dots, \!\! \left(\!\! x^r, \hat{y}^r \right)\!\!, \dots \!\!\}$$

- <u>Output</u>: weight vector w
- <u>Algorithm</u>: Initialize w = 0
 - do
 - For each pair of training example (x^r, \hat{y}^r)
 - Find the label \tilde{y}^r maximizing $w \cdot \phi(x^r, y)$ $\tilde{y}^r = \arg \max_{y \in Y} w \cdot \phi(x^r, y)$ (question 2)

• If
$$\tilde{y}^r \neq \hat{y}^r$$
, update w
 $w \rightarrow w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r)$

• until w is not updated We are done!

Algorithm - Example

Algorithm - Example

Initialize w = 0 pick (x^1, \hat{y}^1) $\widetilde{y}^1 = \arg \max_{y \in Y} w \cdot \phi(x^1, y)$ If $\widetilde{y}^1 \neq \hat{y}^1$, update w $w \rightarrow w + \phi(x^1, \hat{y}^1) - \phi(x^1, \widetilde{y}^1)$ $w \qquad \widetilde{y}^1$ • $\phi(x^1, \hat{y}^1)$ • $\phi(x^1, y)$ * $\phi(x^2, \hat{y}^2)$ * $\phi(x^2, y)$

Because w=0 at this time, $\phi(x^1, y)$ always 0

Random pick one point as \tilde{y}^r

Assumption: Separable

• There exists a weight vector \widehat{w}

$$\|\hat{w}\| = 1$$

 $\forall r$ (All training examples)

 $\forall y \in Y - \{ \hat{y}^r \}$ (All incorrect label for an example)

$$\hat{w} \cdot \phi(x^r, \hat{y}^r) \ge \hat{w} \cdot \phi(x^r, y) \text{ (The target exists)}$$
$$\hat{w} \cdot \phi(x^r, \hat{y}^r) \ge \hat{w} \cdot \phi(x^r, y) + \delta$$

Assumption: Separable

w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle ρ_k between \hat{W} and w_k is smaller as k increases

Analysis $\cos \rho_k$ (larger and larger?) $\cos \rho_k = \frac{|\hat{w} - w^k|}{||\hat{w}||} \cdot \frac{|\hat{w}||}{||w^k||}$ $\hat{w} \cdot w^k = \hat{w} \cdot (w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n))$ $= \hat{w} \cdot w^{k-1} + \hat{w} \cdot \phi(x^n, \hat{y}^n) - \hat{w} \cdot \phi(x^n, \tilde{y}^n) \ge \hat{w} \cdot w^{k-1} + \delta$ $\ge \delta$ (Separable)

w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle ρ_k between \hat{W} and w_k is smaller as k increases

Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k} = \frac{\hat{w} \cdot w^{k}}{\|\hat{w}\| \cdot \|w^{k}\|}$ $\hat{w} \cdot w^{k} \ge \hat{w} \cdot w^{k-1} + \delta$ $=0 \qquad \ge \delta$ $\hat{w} \cdot w^{1} \ge \hat{w} \cdot w^{0} + \delta \quad \hat{w} \cdot w^{2} \ge \hat{w} \cdot w^{1} + \delta \cdots$ $\hat{w} \cdot w^{1} \ge \delta \qquad \hat{w} \cdot w^{2} \ge 2\delta \qquad \dots$ $\hat{w} \cdot w^{k} \ge k\delta$ (so what)

$$\cos \rho_{k} = \frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\|w^{k}\|} \qquad w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \\ \|w^{k}\|^{2} = \|w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})\|^{2} \\ = \|w^{k-1}\|^{2} + \|\frac{\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})\|^{2} + 2w^{k-1} \cdot (\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}))}{>0} \\ > 0 \qquad ? < 0 \text{ (mistake)} \\ \text{Assume the distance} \\ \text{between any two feature} \\ \text{vector is smaller than R} \qquad \|w^{1}\|^{2} \le \|w^{0}\|^{2} + R^{2} = R^{2} \\ \|w^{2}\|^{2} \le \|w^{1}\|^{2} + R^{2} \le 2R^{2} \\ \cdots \\ \|w^{k}\|^{2} \le kR^{2} \end{aligned}$$

Structured Linear Model: Reduce 3 Problems to 2

Problem 1: Evaluation

• How to define F(x,y)

Problem 2: Inference

 How to find the y with the largest F(x,y)

Problem 3: Training

• How to learn F(x,y)

$F(x,y)=w\cdot\varphi(x,y)$

Problem A: Feature

• How to define $\phi(x,y)$

Problem B: Inference

 How to find the y with the largest w·φ(x,y) Graphical Model A language which describes the evaluation function

Structured Learning

We also know how to involve hidden information.

Problem 1: Evaluation

• What does F(x,y) look like? $F(x,y) = w \cdot \phi(x,y)$

Problem 2: Inference

• How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

Problem 3: Training

• Given training data, how to find F(x,y) Structured SVM, etc.

Hard to figure out? Hard to interpret the meaning?

Difficulty 2. Inference

Gibbs Sampling

We can use Viterbi algorithm to deal with sequence labeling. How about other cases?

Graphical Model

$$F(x,y)$$
 Graph

- Define and describe your evaluation function F(x,y) by a graph
- There are three kinds of graphical model.
 - Factor graph, Markov Random Field (MRF) and Bayesian Network (BN)
 - Only *factor graph* and *MRF* will be briefly mentioned today.

Decompose F(x,y)

- *F*(*x*, *y*) is originally a *global* function
 - Define over the whole x and y
- Based on graphical model, F(x, y) is the composition of some <u>local</u> functions
 - x and y are decomposed into smaller components
 - Each local function defines on only a few related components in x and y
 - Which components are related → defined by Graphical model

Decomposable x and y

• x and y are decomposed into smaller components

Factor Graph

Each factor influences some components.

Each factor corresponds to a local function.

$$F(x, y) = f_a(x_1, y_1) + f_b(x_2, y_1, y_2) + f_c(y_2)$$

You only have to define the factors.

The local functions of the factors are learned from data.

Image De-noising

Each pixel is one component

http://cs.stanford.edu/people/karpathy/visml/ising_example.html

Noisy and clean images are related
 ➤ a: the values of x_i and y_i
 The colors in the clean image is smooth.

b: the values of the neighboring y_i

Factor:

$$f_a(x_i, y_i) = \begin{cases} 1 & x_i = y_i \\ -1 & x_i \neq y_i \end{cases}$$
$$f_b(y_i, y_j) = \begin{cases} 2 & y_i = y_j \\ -2 & y_i \neq y_j \end{cases}$$

The weights can be learned from data.

Noisy and clean images are related
 ➤ a: the values of x_i and y_i
 The colors in the clean image is smooth.

b: the values of the neighboring y_i

Factor:

Realize F(x, y) easily from the factor graph

$$F(x, y) = \sum_{i=1}^{4} f_a(x_i, y_i)$$

 $+f_b(x_1, y_2) + f_b(x_1, y_3)$ $+f_b(x_2, y_4) + f_b(x_3, y_4)$

Factor:

c: the values of x_i and the values of the neighboring y_i

d: the values of the neighboring x_i and the values of y_i

 $f_c(x_i, y_i, y_{i-1})$

$$f_d(x_i, x_{i-1}, y_i)$$

$$f_e(x_i, x_{i-1}, y_i, y_{i-1})$$

Markov Random Field (MRF)

Clique: a set of components connecting to each other Maximum Clique: a clique that is not included by other cliques

MRF Each maximum clique on the graph corresponds to a factor

Factor Graph MRF А В Α В f(A,B)В В С Α Α С f(A, B, C)В D В С Α D A С f(A, B, C, D)

MRF

Evaluation Function

 $f_a(A,B) + f_b(A,D) + f_c(B,C) + f_d(C,D,E) + f_e(E,F,G)$

 $F(x, y) = f_a(x_1, x_2, y_1) + f_b(y_1, y_2)$ = $w_a \cdot \phi_a(x_1, x_2, y_1) + w_b \cdot \phi_b(y_1, y_2)$

 $= \begin{bmatrix} w_a \\ w_b \end{bmatrix} \begin{bmatrix} \phi_a(x_1, x_2, y_1) \\ \phi_b(y_1, y_2) \end{bmatrix}$

 $= w \cdot \phi(x, y)$

Simply training by structured perceptron or structured SVM

Max-Margin Markov Networks (M3N)

Now can you interpret this?

Probability Point of View

- F(x, y) can be any real number
- If you like probability

Evaluation Function

- We want to find an evaluation function F(x)
 - Input: object x, output: scalar F(x) (how "good" the object is)
 - E.g. x are images
 - Real x has high F(x)
 - F(x) can be a network
- We can generate good x by F(x):
 - Find x with large F(x)
- How to find F(x)?

In practice, you cannot decrease all the x other than real data.

real data

Evaluation Function - Structured Perceptron

• Input: training data set
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$$

- **Output**: weight vector w
- <u>Algorithm</u>: Initialize w = 0

$$F(x, y) = w \cdot \phi(x, y)$$

For each pair of training example (x^r, ŷ^r)
Find the label ỹ^r maximizing F(x^r, y)

Can be an issue
$$\widetilde{y}^r = \arg \max_{y \in Y} F(x^r, y)$$

• If
$$\tilde{y}^r \neq \hat{y}^r$$
, update w
Increase $F(x^r, \hat{y}^r)$,
decrease $F(x^r, \tilde{y}^r)$ $w \rightarrow w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r)$

• until w is not updated We are done!

How about GAN?

 Generator is an intelligent way to find the negative examples.

"Experience replay", parameters from last iteration

In the end

