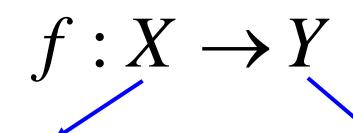
# Introduction of Structured Learning Hung-yi Lee

## Structured Learning

- We need a more powerful function *f* 
  - Input and output are both objects with structures
  - Object: sequence, list, tree, bounding box ...



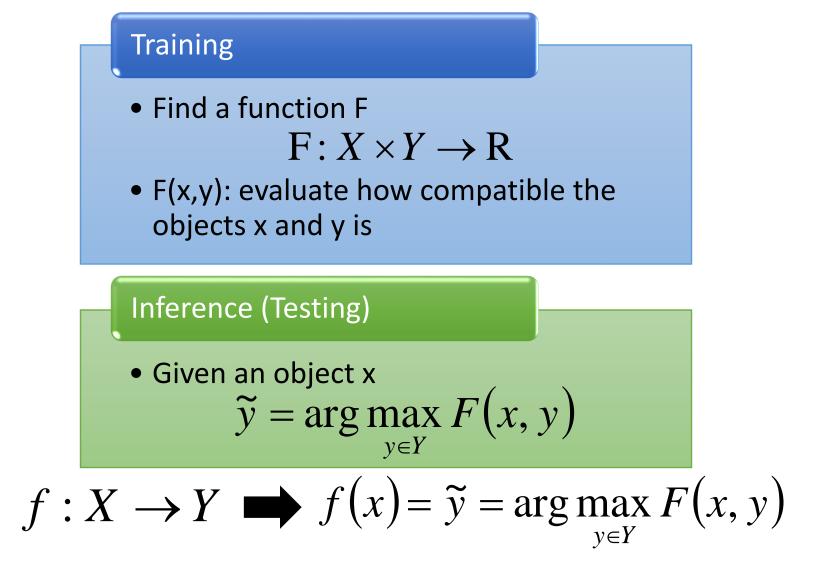
**X** is the space of one kind of object

**Y** is the space of another kind of object

In the previous lectures, the input and output are both vectors.

Introduction of Structured Learning Unified Framework

## Unified Framework



## Unified Framework – Object Detection

Task description



- Using a bounding box to highlight the position of a certain object in an image
- E.g. A detector of Haruhi
  - X: Image  $\longrightarrow$  Y: Bounding Box



### Haruhi

(the girl with yellow ribbon)

## Unified Framework – Object Detection

#### Training

- Find a function F  $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

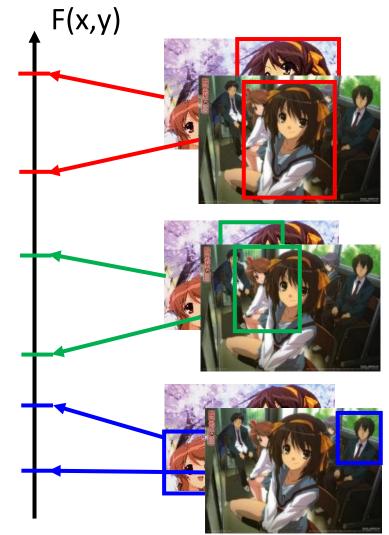
x: Image

y: Bounding Box

F(x,y) ➡ F(



the correctness of taking range of y in x as "Haruhi"



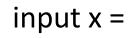
## Unified Framework – Object Detection

#### Training

- Find a function F  $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

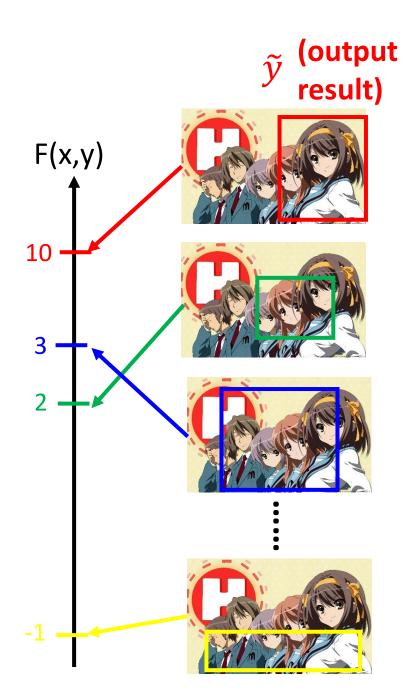
#### Inference (Testing)

- Given an object x
  - $\widetilde{y} = \arg \max_{y \in Y} F(x, y)$



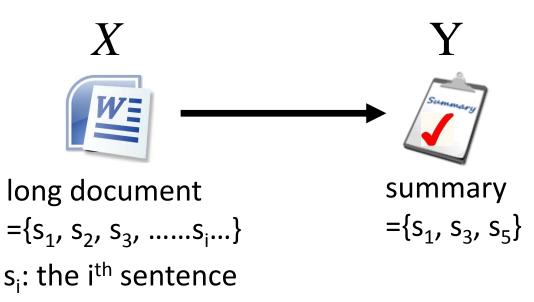


Enumerate all possible bounding box y



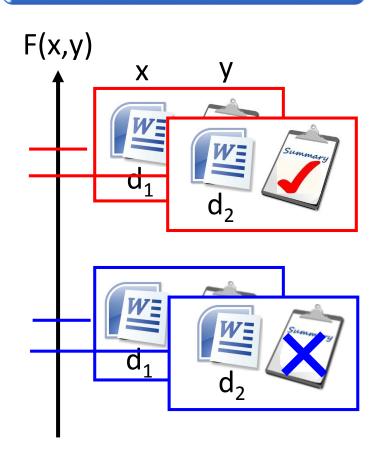
## Unified Framework

- Summarization
- Task description
  - Given a long document
  - Select a set of sentences from the document, and cascade the sentences to form a short paragraph

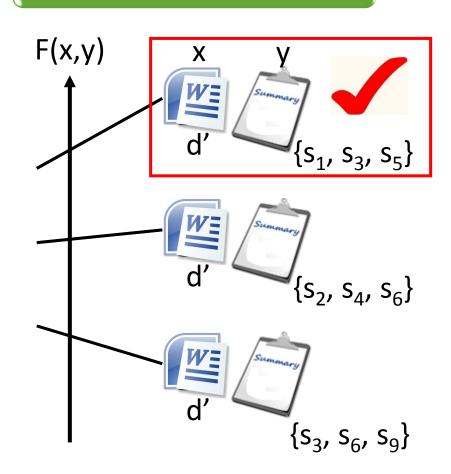


## Unified Framework - Summarization

#### Training



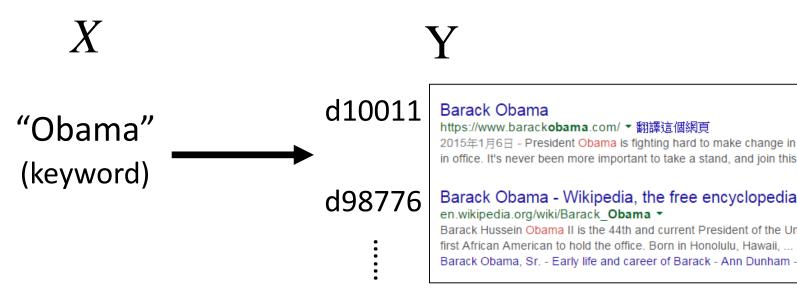
#### Inference



## Unified Framework

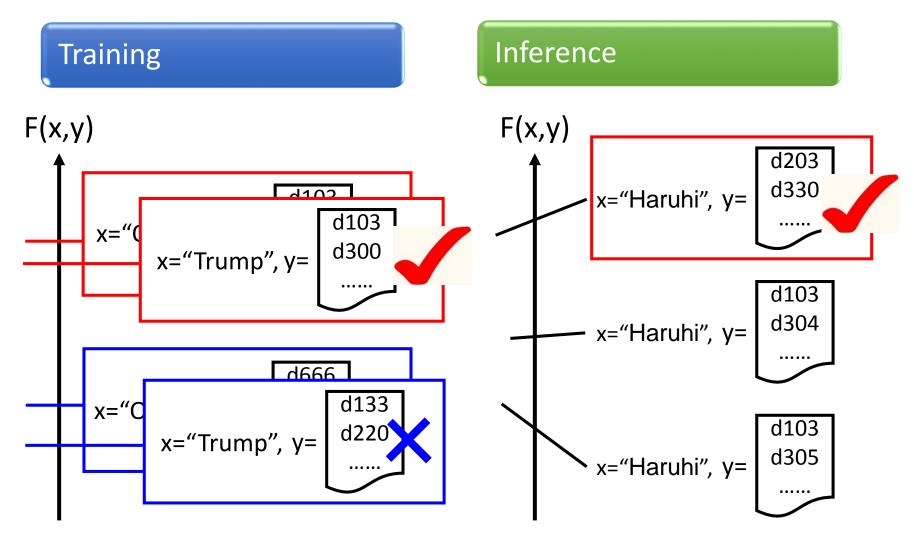
## - Retrieval

- Task description
  - User input a keyword Q
  - System returns a *list* of web pages



A list of web pages (Search Result)

## Unified Framework - Retrieval



### **Statistics**

### **Unified Framework**

#### Training

- Find a function F  $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

#### Inference

• Given an object x  $\widetilde{y} = \underset{y \in Y}{\operatorname{arg max}} F(x, y)$ 

F(x, y) = P(x, y)?

#### Training

• Estimate the probability P(x,y) P:  $X \times Y \rightarrow [0,1]$ 

#### Inference

• Given an object x  $\widetilde{y} = \arg \max_{y \in Y} P(y \mid x)$   $= \arg \max_{y \in Y} \frac{P(x, y)}{P(x)}$   $= \arg \max_{y \in Y} P(x, y)$ 

### **Statistics**

### **Unified Framework**

$$F(x, y) = P(x, y)?$$

### Drawback for probability

- Probability cannot explain everything
- 0-1 constraint is not necessary

### Strength for probability

Meaningful

Energy-based Model: http://www.cs.nyu.edu /~yann/research/ebm/

#### Training

• Estimate the probability P(x,y) P:  $X \times Y \rightarrow [0,1]$ 

#### Inference

• Given an object x  $\widetilde{y} = \arg \max_{y \in Y} P(y \mid x)$   $= \arg \max_{y \in Y} \frac{P(x, y)}{P(x)}$   $= \arg \max_{y \in Y} P(x, y)$ 

## Unified Framework That's it!?



- Find a function F  $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

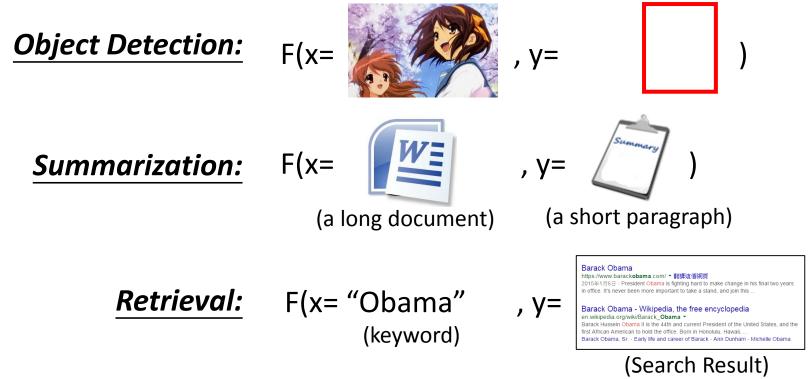
Inference (Testing)

• Given an object x  $\widetilde{y} = \underset{y \in Y}{\arg \max} F(x, y)$ 

There are three problems in this framework.

### Problem 1

- *Evaluation*: What does F(x,y) look like?
  - How F(x,y) compute the "compatibility" of objects x and y



### Problem 2

Inference: How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

### The space *Y* can be extremely large!

**Object Detection:** Y=All possible bounding box (maybe tractable)

**Summarization:** Y=All combination of sentence set in a document ...

**Retrieval:** Y=All possible webpage ranking ....

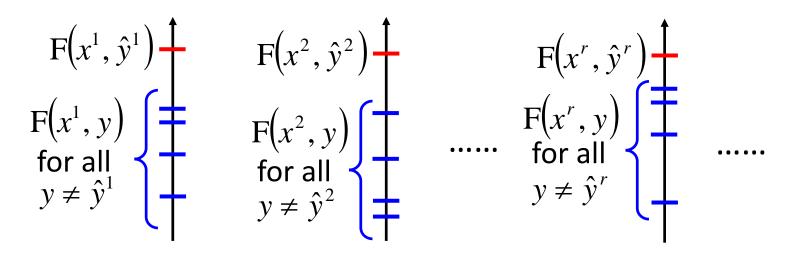
### Problem 3

• Training: Given training data, how to find F(x,y)

### Principle

Training data:  $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$ 

We should find F(x,y) such that .....



## Three Problems

**Problem 1: Evaluation** 

• What does F(x,y) look like?

#### Problem 2: Inference

• How to solve the "arg max" problem

$$y = \arg \max_{y \in Y} F(x, y)$$

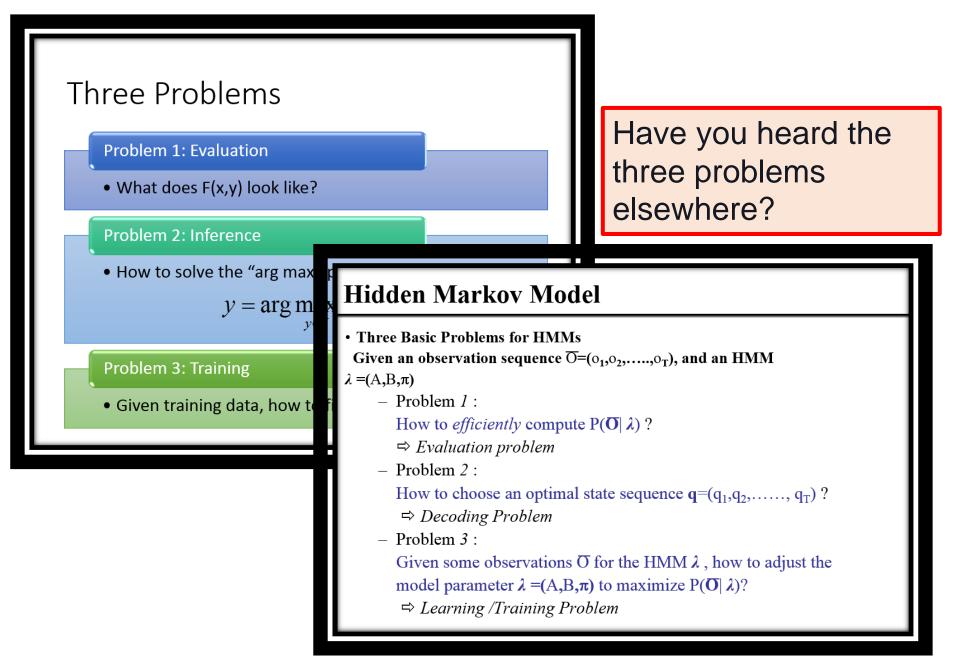
#### Problem 3: Training

• Given training data, how to find F(x,y)









From 數位語音處理

## Link to DNN?

## The same as what we have learned.

#### Training

$$F: X \times Y \rightarrow R$$

$$F(x, y) = -CE(N(x), y)$$

$$CE(N(x), y)$$

$$N(x)$$

$$N(x)$$

$$y$$

#### Inference

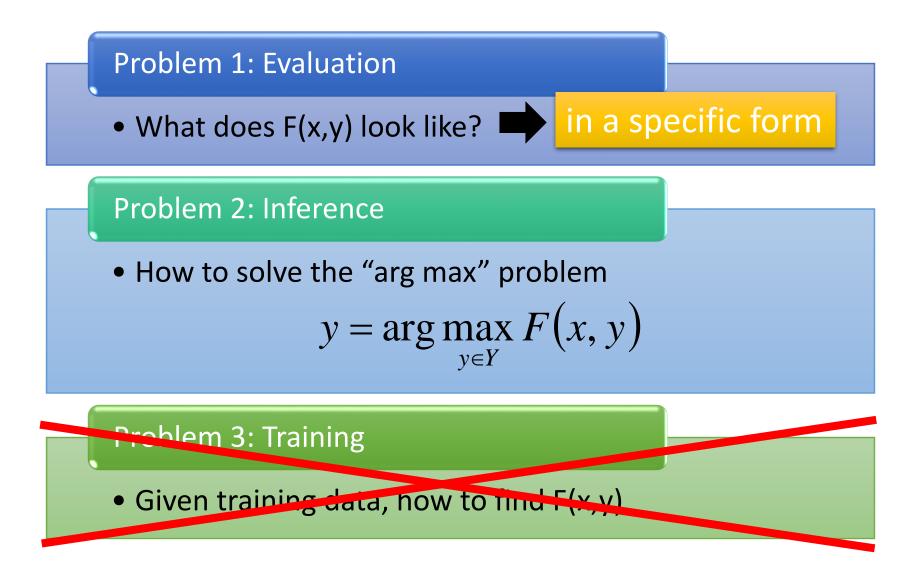
$$\widetilde{y} = \arg \max_{y \in Y} F(x, y)$$

In handwriting digit classification, there are only 10 possible y.

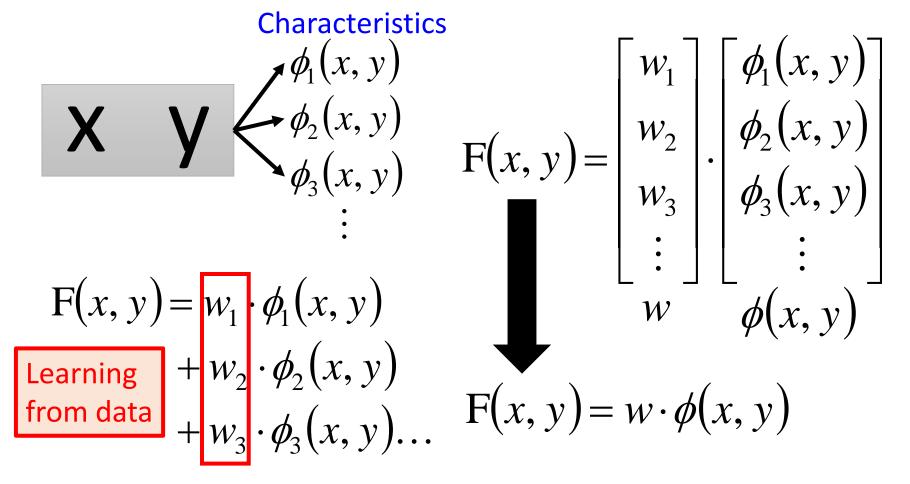
$$\begin{cases} y = [1 \ 0 \ 0 \ 0 \ \dots \ ] \\ y = [0 \ 1 \ 0 \ 0 \ \dots \ ] \\ y = [0 \ 0 \ 1 \ 0 \ \dots \ ] \\ \vdots \\ Find max \end{cases}$$

Introduction of Structured Learning Linear Model

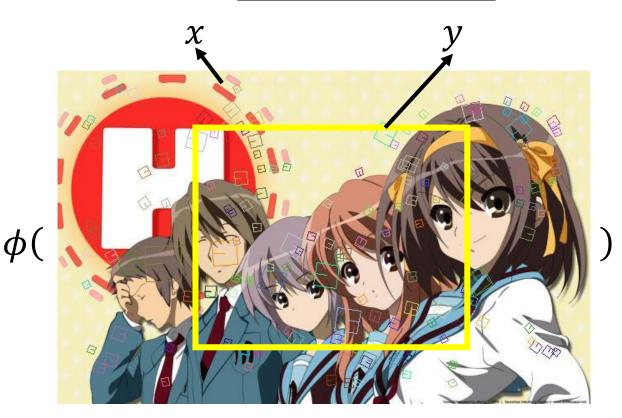
### Structured Linear Model



• Evaluation: What does F(x,y) look like?



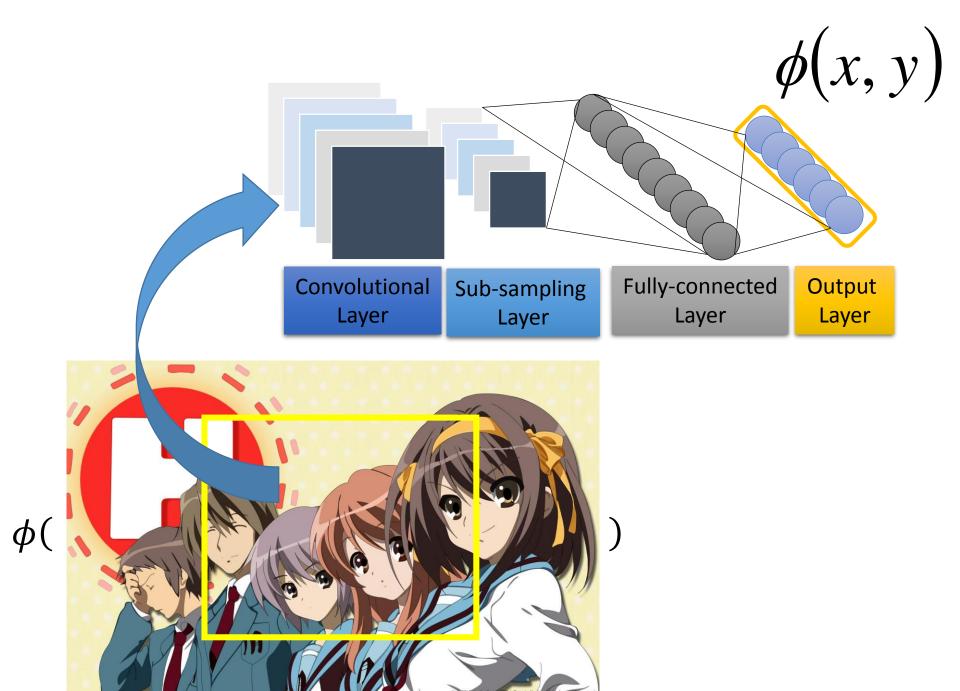
- Evaluation: What does F(x,y) look like?
- Example: *Object Detection*



percentage of color red in box y percentage of color green in box y

percentage of color blue in box y percentage of color red out of box y

area of box y number of specific patterns in box y



• Inference: How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

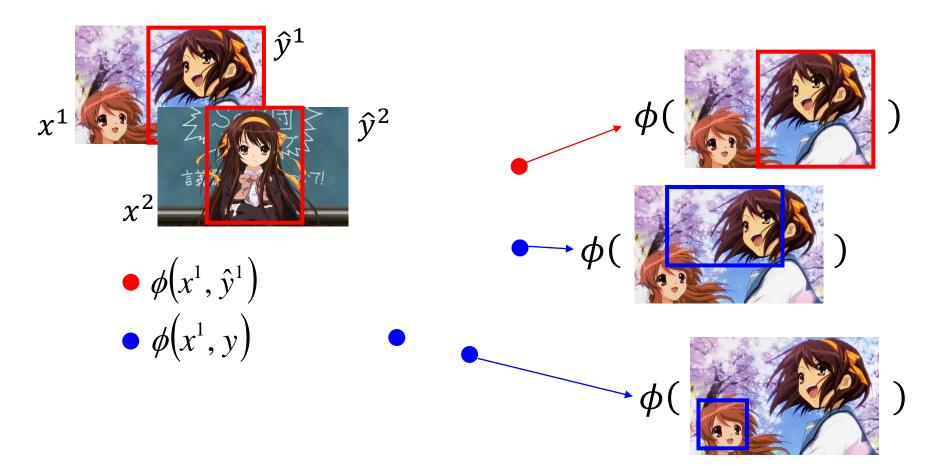
$$F(x, y) = w \cdot \phi(x, y) \qquad \qquad y = \arg \max_{y \in Y} w \cdot \phi(x, y)$$

Assume we have solved this question.

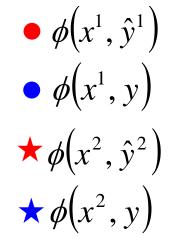
- Training: Given training data, how to learn F(x,y)
  - $F(x,y) = w \cdot \phi(x,y)$ , so what we have to learn is w

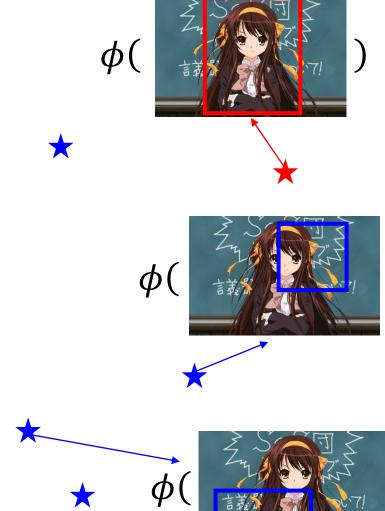
Training data:  $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^r, \hat{y}^r), \dots\}$ We should find w such that

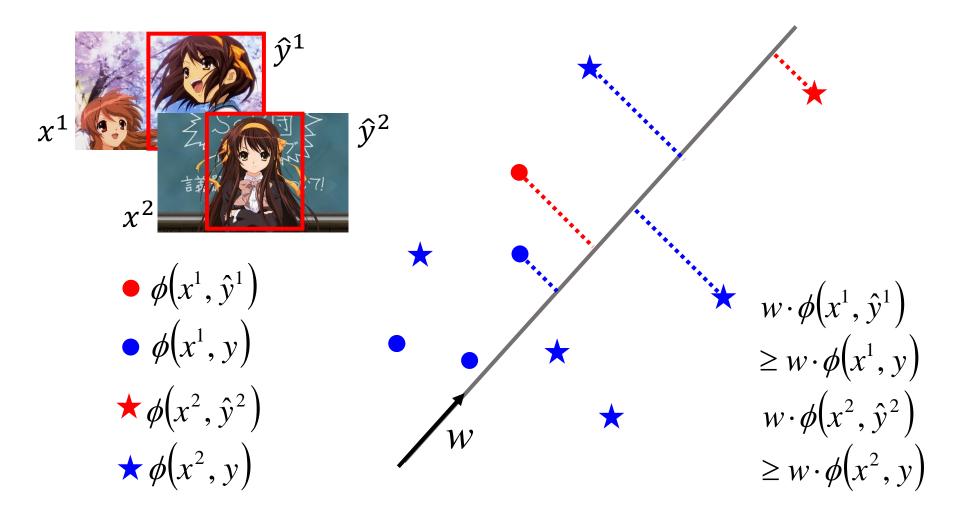
 $\forall r \text{ (All training examples)} \\ \forall y \in Y - \{\hat{y}^r\} \begin{array}{l} \text{(All incorrect label} \\ \text{for r-th example)} \\ w \cdot \phi(x^r, \hat{y}^r) > w \cdot \phi(x^r, y) \end{array}$ 











# Solution of Problem 3 Difficult? Not as difficult as expected

## Algorithm

### Will it terminate?

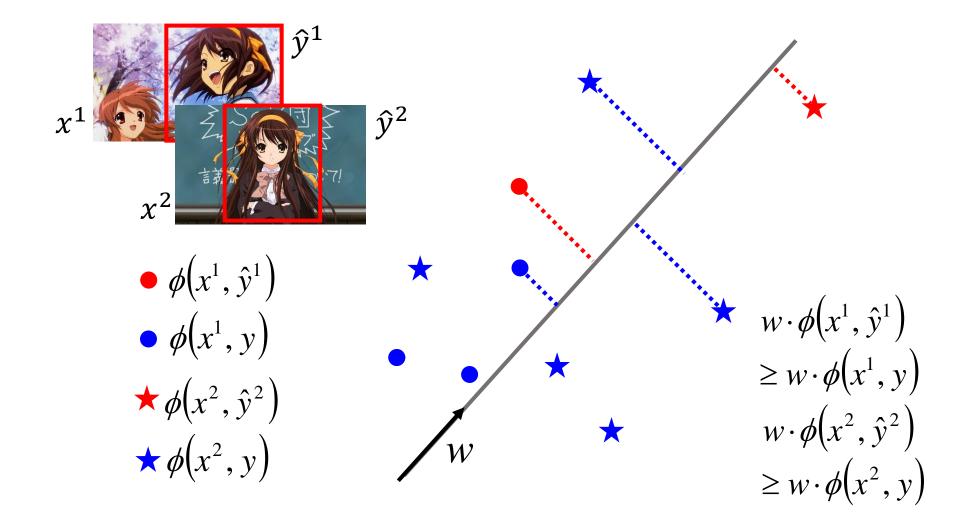
• Input: training data set 
$$\{\!\! \left(\!\! x^1, \hat{y}^1 \right)\!\!, \!\! \left(\!\! x^2, \hat{y}^2 \right)\!\!, \dots, \!\! \left(\!\! x^r, \hat{y}^r \right)\!\!, \dots \!\!\}$$

- <u>Output</u>: weight vector w
- <u>Algorithm</u>: Initialize w = 0
  - do
    - For each pair of training example  $(x^r, \hat{y}^r)$ 
      - Find the label  $\tilde{y}^r$  maximizing  $w \cdot \phi(x^r, y)$  $\tilde{y}^r = \arg \max_{y \in Y} w \cdot \phi(x^r, y)$  (question 2)

• If 
$$\tilde{y}^r \neq \hat{y}^r$$
, update w  
 $w \rightarrow w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r)$ 

• until w is not updated We are done!

### Algorithm - Example



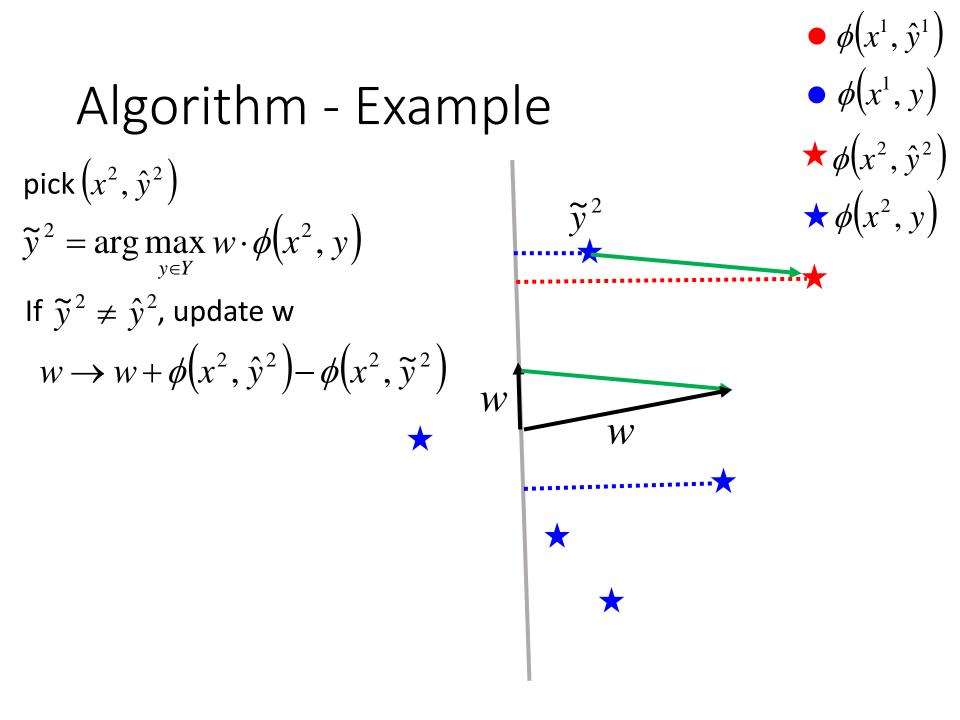
### Algorithm - Example

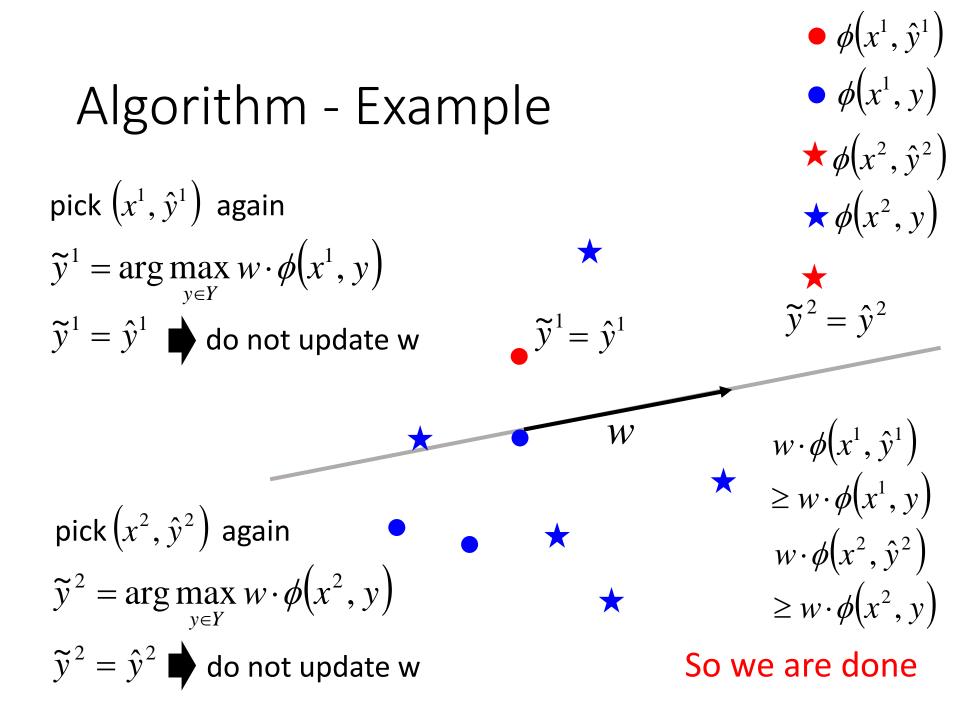
Initialize w = 0 pick  $(x^1, \hat{y}^1)$   $\widetilde{y}^1 = \arg \max_{y \in Y} w \cdot \phi(x^1, y)$ If  $\widetilde{y}^1 \neq \hat{y}^1$ , update w  $w \rightarrow w + \phi(x^1, \hat{y}^1) - \phi(x^1, \widetilde{y}^1)$   $w \qquad \widetilde{y}^1$  •  $\phi(x^1, \hat{y}^1)$ •  $\phi(x^1, y)$ \*  $\phi(x^2, \hat{y}^2)$ \*  $\phi(x^2, y)$ 

Because w=0 at this time,  $\phi(x^1, y)$  always 0



Random pick one point as  $\tilde{y}^r$ 





## Assumption: Separable

• There exists a weight vector  $\widehat{w}$ 

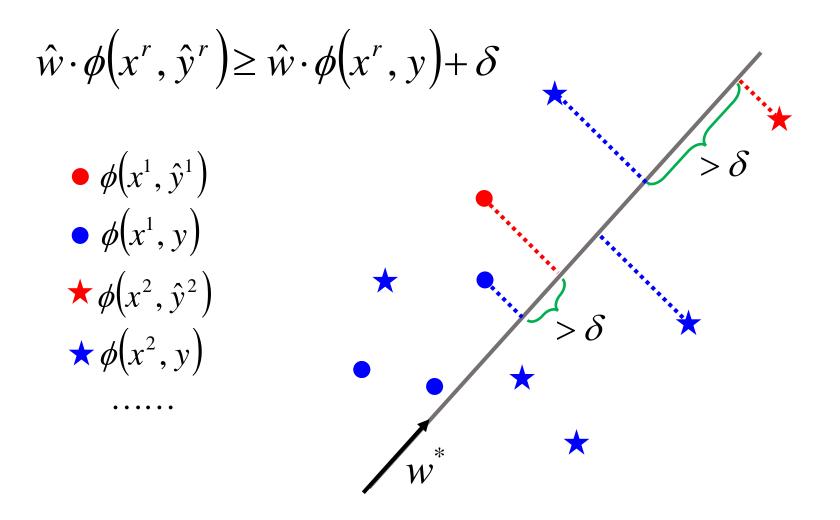
$$\|\hat{w}\| = 1$$

 $\forall r$  (All training examples)

 $\forall y \in Y - \{ \hat{y}^r \}$  (All incorrect label for an example)

$$\hat{w} \cdot \phi(x^r, \hat{y}^r) \ge \hat{w} \cdot \phi(x^r, y) \text{ (The target exists)}$$
$$\hat{w} \cdot \phi(x^r, \hat{y}^r) \ge \hat{w} \cdot \phi(x^r, y) + \delta$$

### Assumption: Separable



w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle  $\rho_k$  between  $\hat{W}$  and  $w_k$  is smaller as k increases

Analysis  $\cos \rho_k$  (larger and larger?)  $\cos \rho_k = \frac{|\hat{w} - w^k|}{||\hat{w}||} \cdot \frac{|\hat{w}||}{||w^k||}$  $\hat{w} \cdot w^k = \hat{w} \cdot (w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n))$  $= \hat{w} \cdot w^{k-1} + \hat{w} \cdot \phi(x^n, \hat{y}^n) - \hat{w} \cdot \phi(x^n, \tilde{y}^n) \ge \hat{w} \cdot w^{k-1} + \delta$  $\ge \delta$  (Separable)

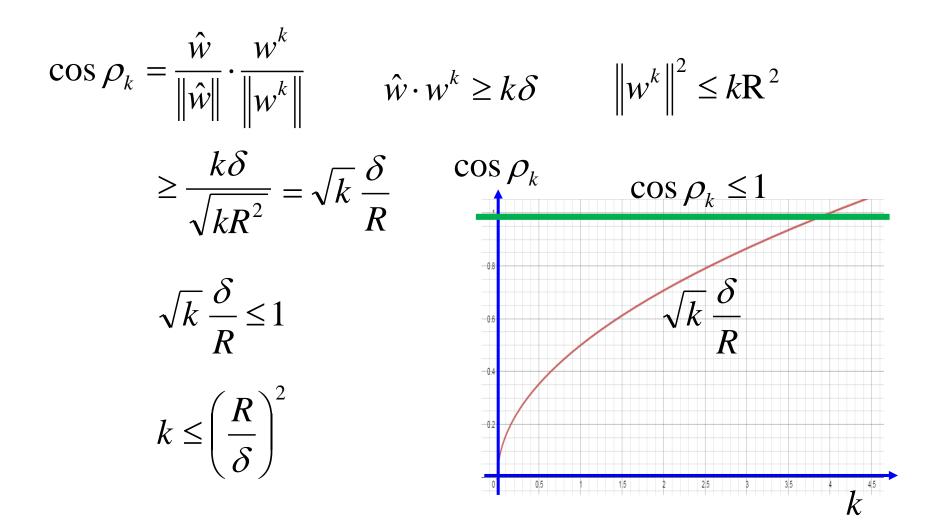
w is updated once it sees a mistake

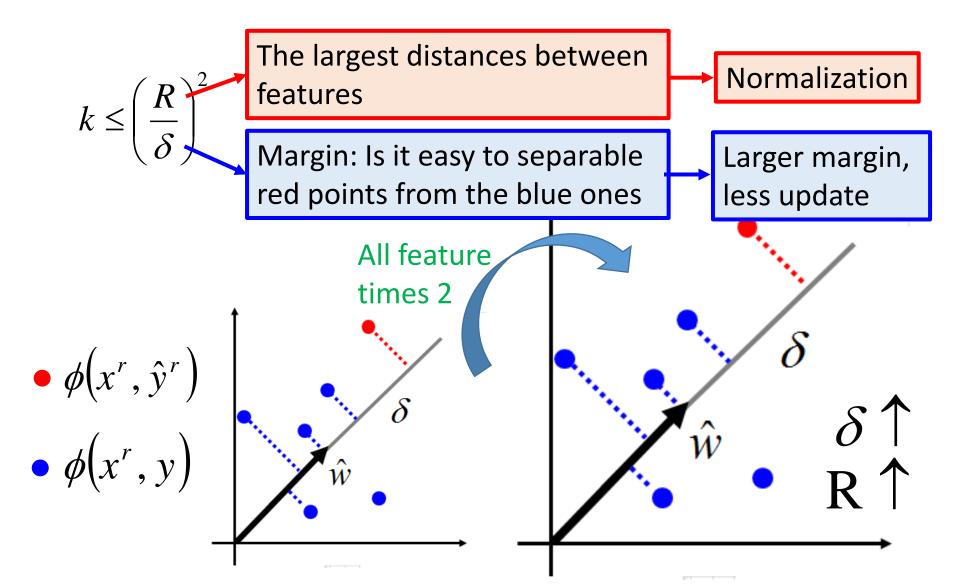
$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle  $\rho_k$  between  $\hat{W}$  and  $w_k$  is smaller as k increases

Analysis  $\cos \rho_{k}$  (larger and larger?)  $\cos \rho_{k} = \frac{\hat{w} \cdot w^{k}}{\|\hat{w}\| \cdot \|w^{k}\|}$   $\hat{w} \cdot w^{k} \ge \hat{w} \cdot w^{k-1} + \delta$   $=0 \qquad \ge \delta$   $\hat{w} \cdot w^{1} \ge \hat{w} \cdot w^{0} + \delta \quad \hat{w} \cdot w^{2} \ge \hat{w} \cdot w^{1} + \delta \cdots$   $\hat{w} \cdot w^{1} \ge \delta \qquad \hat{w} \cdot w^{2} \ge 2\delta \qquad \dots$  $\hat{w} \cdot w^{k} \ge k\delta$  (so what)

$$\cos \rho_{k} = \frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\|w^{k}\|} \qquad w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \\ \|w^{k}\|^{2} = \|w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})\|^{2} \\ = \|w^{k-1}\|^{2} + \|\frac{\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})\|^{2} + 2w^{k-1} \cdot (\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}))}{>0} \\ > 0 \qquad ? < 0 \text{ (mistake)} \\ \text{Assume the distance} \\ \text{between any two feature} \\ \text{vector is smaller than R} \qquad \|w^{1}\|^{2} \le \|w^{0}\|^{2} + R^{2} = R^{2} \\ \|w^{2}\|^{2} \le \|w^{1}\|^{2} + R^{2} \le 2R^{2} \\ \cdots \\ \|w^{k}\|^{2} \le kR^{2} \end{aligned}$$





Structured Linear Model: Reduce 3 Problems to 2

### **Problem 1: Evaluation**

• How to define F(x,y)

### **Problem 2: Inference**

 How to find the y with the largest F(x,y)

**Problem 3: Training** 

• How to learn F(x,y)

### $F(x,y)=w\cdot\varphi(x,y)$

### **Problem A: Feature**

• How to define  $\phi(x,y)$ 

### Problem B: Inference

 How to find the y with the largest w·φ(x,y) Graphical Model A language which describes the evaluation function

# Structured Learning

We also know how to involve hidden information.

**Problem 1: Evaluation** 

• What does F(x,y) look like?  $F(x,y) = w \cdot \phi(x,y)$ 

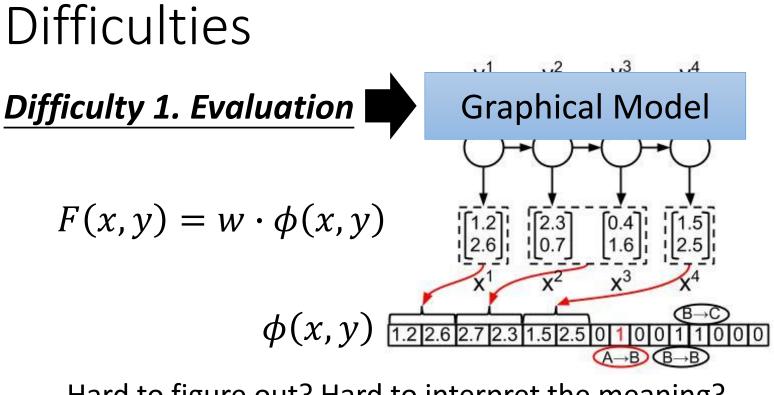
Problem 2: Inference

• How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

#### Problem 3: Training

• Given training data, how to find F(x,y) Structured SVM, etc.



Hard to figure out? Hard to interpret the meaning?

**Difficulty 2. Inference** 



**Gibbs Sampling** 

We can use Viterbi algorithm to deal with sequence labeling. How about other cases?

# Graphical Model

$$F(x,y)$$
 Graph

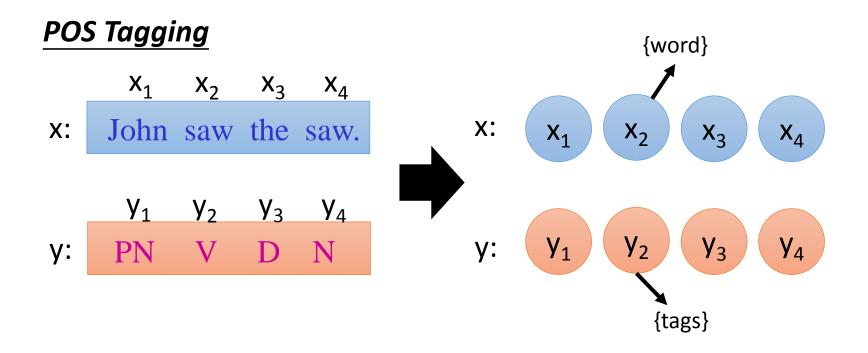
- Define and describe your evaluation function F(x,y) by a graph
- There are three kinds of graphical model.
  - Factor graph, Markov Random Field (MRF) and Bayesian Network (BN)
  - Only *factor graph* and *MRF* will be briefly mentioned today.

# Decompose F(x,y)

- *F*(*x*, *y*) is originally a *global* function
  - Define over the whole x and y
- Based on graphical model, F(x, y) is the composition of some <u>local</u> functions
  - x and y are decomposed into smaller components
  - Each local function defines on only a few related components in x and y
  - Which components are related → defined by Graphical model

# Decomposable x and y

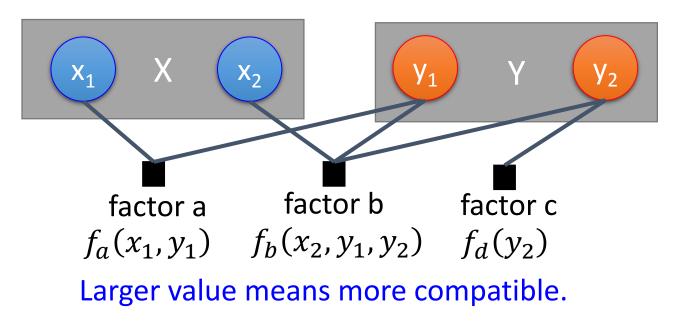
• x and y are decomposed into smaller components



# Factor Graph

Each factor influences some components.

Each factor corresponds to a local function.

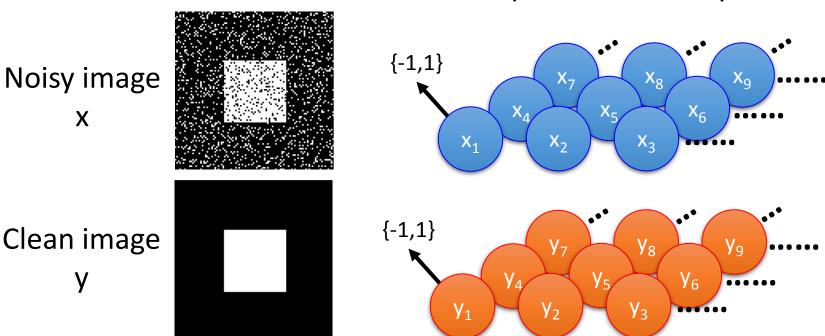


$$F(x, y) = f_a(x_1, y_1) + f_b(x_2, y_1, y_2) + f_c(y_2)$$

You only have to define the factors.

The local functions of the factors are learned from data.

Image De-noising

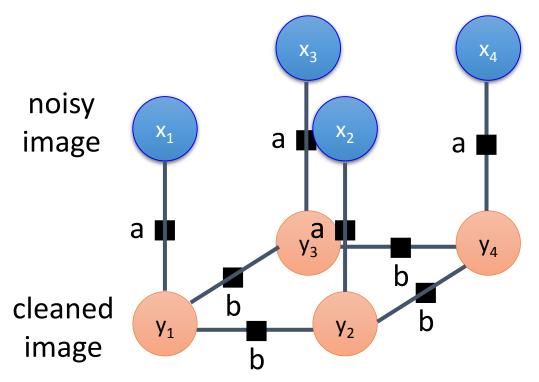


Each pixel is one component

http://cs.stanford.edu/people/karpathy/visml/ising\_example.html

Noisy and clean images are related
 ➤ a: the values of x<sub>i</sub> and y<sub>i</sub>
 The colors in the clean image is smooth.

b: the values of the neighboring y<sub>i</sub>



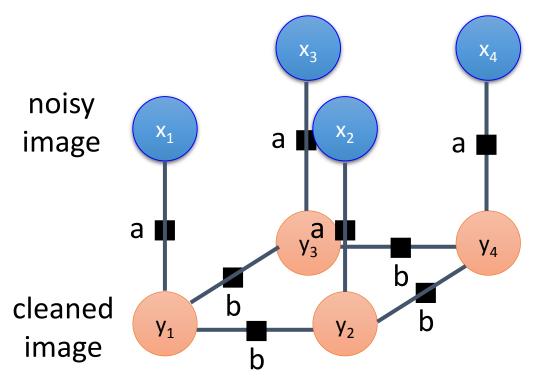
Factor:

$$f_a(x_i, y_i) = \begin{cases} 1 & x_i = y_i \\ -1 & x_i \neq y_i \end{cases}$$
$$f_b(y_i, y_j) = \begin{cases} 2 & y_i = y_j \\ -2 & y_i \neq y_j \end{cases}$$

The weights can be learned from data.

Noisy and clean images are related
 ➤ a: the values of x<sub>i</sub> and y<sub>i</sub>
 The colors in the clean image is smooth.

b: the values of the neighboring y<sub>i</sub>



Factor:

Realize F(x, y) easily from the factor graph

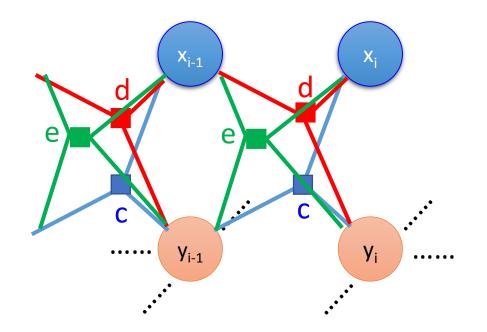
$$F(x, y) = \sum_{i=1}^{4} f_a(x_i, y_i)$$

 $+f_b(x_1, y_2) + f_b(x_1, y_3)$  $+f_b(x_2, y_4) + f_b(x_3, y_4)$ 

#### Factor:

c: the values of x<sub>i</sub> and the values of the neighboring y<sub>i</sub>

d: the values of the neighboring x<sub>i</sub> and the values of y<sub>i</sub>



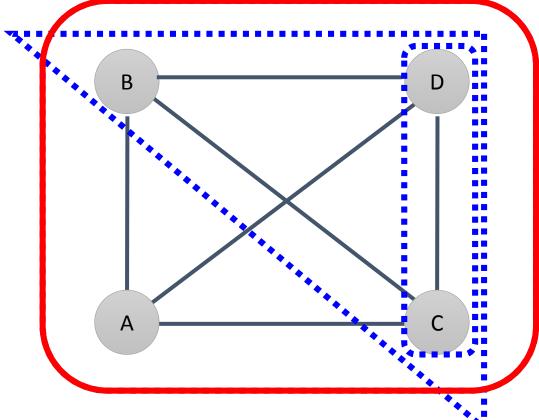
 $f_c(x_i, y_i, y_{i-1})$ 

$$f_d(x_i, x_{i-1}, y_i)$$

$$f_e(x_i, x_{i-1}, y_i, y_{i-1})$$

# Markov Random Field (MRF)

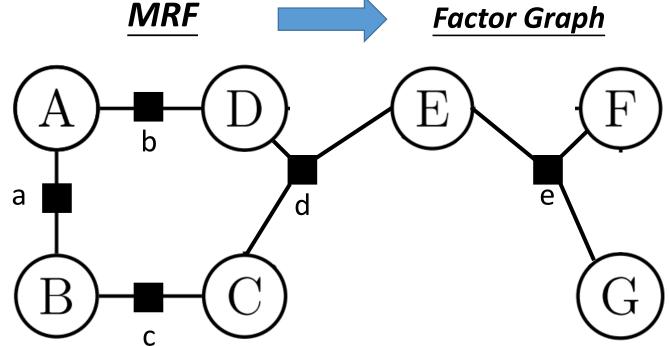
Clique: a set of components connecting to each other Maximum Clique: a clique that is not included by other cliques



# MRF Each maximum clique on the graph corresponds to a factor

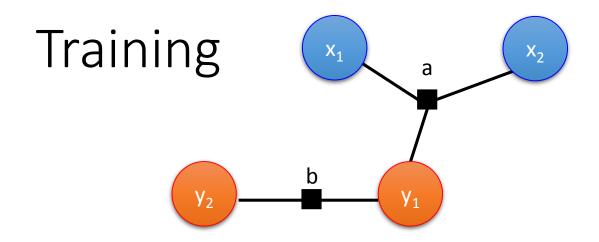
**Factor Graph MRF** А В Α В f(A,B)В В С Α Α С f(A, B, C)В D В С Α D A С f(A, B, C, D)

# MRF



### **Evaluation Function**

 $f_a(A,B) + f_b(A,D) + f_c(B,C) + f_d(C,D,E) + f_e(E,F,G)$ 



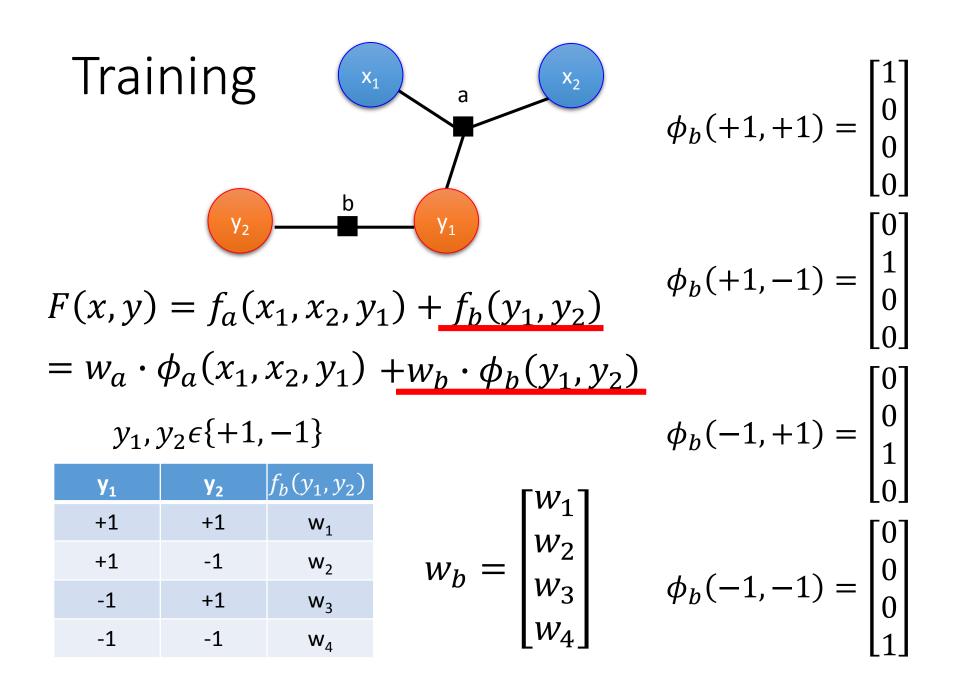
 $F(x, y) = f_a(x_1, x_2, y_1) + f_b(y_1, y_2)$ =  $w_a \cdot \phi_a(x_1, x_2, y_1) + w_b \cdot \phi_b(y_1, y_2)$ 

 $= \begin{bmatrix} w_a \\ w_b \end{bmatrix} \begin{bmatrix} \phi_a(x_1, x_2, y_1) \\ \phi_b(y_1, y_2) \end{bmatrix}$ 

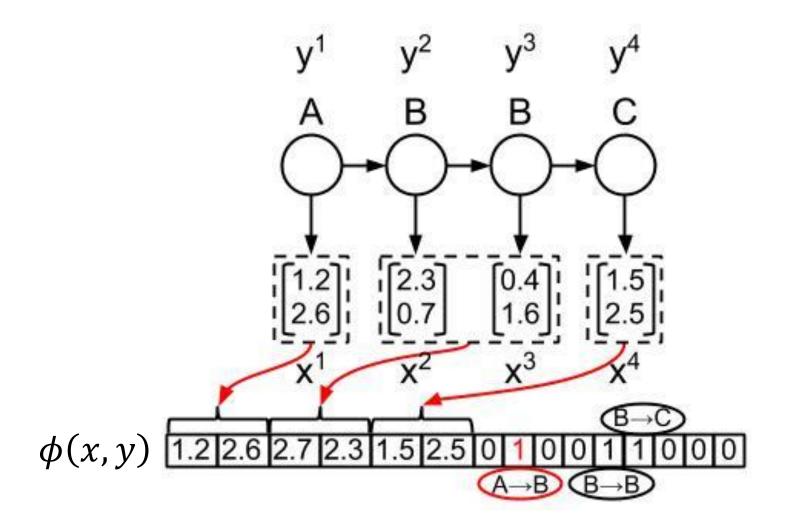
 $= w \cdot \phi(x, y)$ 

Simply training by structured perceptron or structured SVM

Max-Margin Markov Networks (M3N)

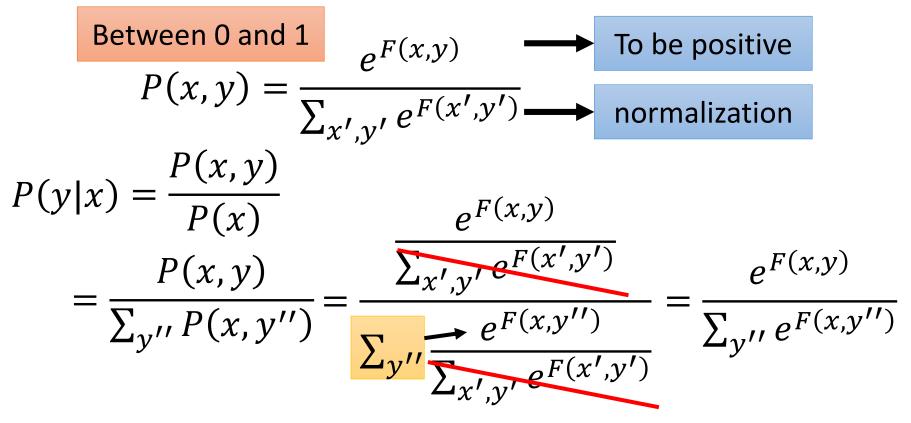


# Now can you interpret this?



# Probability Point of View

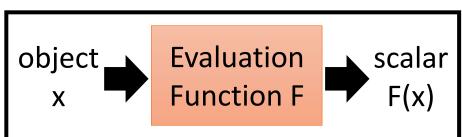
- F(x, y) can be any real number
- If you like probability



# **Evaluation Function**

- We want to find an evaluation function F(x)
  - Input: object x, output: scalar F(x) (how "good" the object is)
  - E.g. x are images
    - Real x has high F(x)
  - F(x) can be a network
- We can generate good x by F(x):
  - Find x with large F(x)
- How to find F(x)?

In practice, you cannot decrease all the x other than real data.



real data

# Evaluation Function - Structured Perceptron

• Input: training data set 
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$$

- **Output**: weight vector w
- <u>Algorithm</u>: Initialize w = 0

$$F(x, y) = w \cdot \phi(x, y)$$

For each pair of training example (x<sup>r</sup>, ŷ<sup>r</sup>)
Find the label ỹ<sup>r</sup> maximizing F(x<sup>r</sup>, y)

**Can be an issue** 
$$\widetilde{y}^r = \arg \max_{y \in Y} F(x^r, y)$$

• If 
$$\tilde{y}^r \neq \hat{y}^r$$
, update w  
Increase  $F(x^r, \hat{y}^r)$ ,  
decrease  $F(x^r, \tilde{y}^r)$   $w \rightarrow w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r)$ 

• until w is not updated We are done!

# How about GAN?

 Generator is an intelligent way to find the negative examples.

"Experience replay", parameters from last iteration

In the end .....

